-->

Monday, March 9, 2015

Tyramine (4-hydroxyphenethylamine; para-tyramine, mydrial or uteramin) is a naturally occurring monoamine compound and trace amine derived from the amino acid tyrosine. Tyramine acts as a catecholamine releasing agent. Notably, however, it is unable to cross the blood-brain barrier, resulting in only nonpsychoactive peripheral sympathomimetic effects. A hypertensive crisis can result from ingestion of tyramine-rich foods in conjunction with monoamine oxidase inhibitors (MAOIs).

Occurrence



Tyramine occurs widely in plants and animals, and is metabolized by the enzyme monoamine oxidase. In foods, it is often produced by the decarboxylation of tyrosine during fermentation or decay. Foods containing considerable amounts of tyramine include meats that are potentially spoiled or pickled, aged, smoked, fermented, or marinated (some fish, poultry, and beef); most pork (except cured ham); chocolate; alcoholic beverages; and fermented foods, such as most cheeses (except ricotta, cottage, cream and Neufchâtel cheeses), sour cream, yogurt, shrimp paste, soy sauce, soybean condiments, teriyaki sauce, tempeh, miso soup, sauerkraut, kimchi, broad (fava) beans, green bean pods, Italian flat (Romano) beans, snow peas, edamame, avocados, bananas, pineapple, eggplants, figs, red plums, raspberries, peanuts, Brazil nuts, coconuts, processed meat, yeast, and an array of cacti.

Physical effects and pharmacology



Evidence for the presence of tyramine in the human brain has been confirmed by postmortem analysis. Additionally, the possibility that tyramine acts directly as a neurotransmitter was revealed by the discovery of a G protein-coupled receptor with high affinity for tyramine, called TAAR1. The TAAR1 receptor is found in the brain, as well as peripheral tissues, including the kidneys.

Tyramine is physiologically metabolized by MAOA. In humans, if monoamine metabolism is compromised by the use of monoamine oxidase inhibitors (MAOIs) and foods high in tyramine are ingested, a hypertensive crisis can result, as tyramine can also displace stored monoamines, such as dopamine, norepinephrine and epinephrine, from pre-synaptic vesicles. The first signs of this were discovered by a neurologist who noticed his wife, who at the time was on MAOI medication, had severe headaches when eating cheese. For this reason, the crisis is still called the "cheese effect" or "cheese crisis", though other foods can cause the same problem. Most processed cheeses do not contain enough tyramine to cause hypertensive effects, although some aged cheeses (such as Stilton) do.

A large dietary intake of tyramine (or a dietary intake of tyramine while taking MAO inhibitors) can cause the tyramine pressor response, which is defined as an increase in systolic blood pressure of 30 mmHg or more. The displacement of norepinephrine (noradrenaline) from neuronal storage vesicles by acute tyramine ingestion is thought to cause the vasoconstriction and increased heart rate and blood pressure of the pressor response. In severe cases, adrenergic crisis can occur.

However, if one has had repeated exposure to tyramine, there is a decreased pressor response; tyramine is degraded to octopamine, which is subsequently packaged in synaptic vesicles with norepinephrine (noradrenaline). Therefore, after repeated tyramine exposure, these vesicles contain an increased amount of octopamine and a relatively reduced amount of norepinephrine. When these vesicles are secreted upon tyramine ingestion, there is a decreased pressor response, as less norepinephrine is secreted into the synapse, and octopamine does not activate alpha or beta adrenergic receptors.

When using a MAO inhibitor (MAOI), the intake of approximately 10 to 25 mg of tyramine is required for a severe reaction compared to 6 to 10 mg for a mild reaction.

Research reveals a possible link between migraine and elevated levels of tyramine. A 2007 review published in Neurological Sciences presented data showing migraine and cluster headaches are characterised by an increase of circulating neurotransmitters and neuromodulators (including tyramine, octopamine and synephrine) in the hypothalamus, amygdala and dopaminergic system.

Biosynthesis



Biochemically, tyramine is produced by the decarboxylation of tyrosine via the action of the enzyme tyrosine decarboxylase. Tyramine can, in turn, be converted to methylated alkaloid derivatives N-methyltyramine, N,N-dimethyltyramine (hordenine), and N,N,N-trimethyltyramine (candicine).

In humans, tyramine is produced from tyrosine, as shown in the following diagram.

Chemistry



In the laboratory, tyramine can be synthesized in various ways, in particular by the decarboxylation of tyrosine.

Legal status



United States

Tyramine is not scheduled at the federal level in the United States and is therefore legal to buy, sell, or possess.

Florida

Tyramine is a Schedule I controlled substance in the state of Florida making it illegal to buy, sell, or possess in pure form.

See also



  • Trace amines
  • Octopamine
  • Phenethylamine
  • N-methyltyramine
  • Hordenine
  • Candicine

References





 
Sponsored Links